Mechanisms of vasoactive intestinal peptide-mediated vasodilation in human skin
- 1 October 2004
- journal article
- clinical trial
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 97 (4) , 1291-1298
- https://doi.org/10.1152/japplphysiol.00366.2004
Abstract
Vasoactive intestinal peptide (VIP) is known to induce histamine release in human skin and to include a nitric oxide (NO)-dependent dilation in several other vascular beds. However, the relative contribution of histamine and NO to VIP-mediated vasodilation in human skin is unknown. Forty-three subjects volunteered to participate in two studies designed to examine the mechanism of VIP-mediated vasodilation in human skin. Study 1 examined the contribution of NO in the skin blood flow response to eight doses of VIP ranging from 25 to 800 pmol. In addition, study 1 examined a specific role for NO in VIP-mediated dilation. Study 2 examined the relative contribution of NO and histamine to VIP-mediated dilation via H1 and H2 histamine receptors. Infusions were administered to skin sites via intradermal microdialysis. Red blood cell flux was measured by using laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was calculated and normalized to maximal vasodilation. VIP-mediated vasodilation includes a NO-dependent component at doses above 100 pmol, where NO synthase inhibition significantly attenuates CVC (P < 0.05). Inhibition of H1 receptors attenuates the rise in CVC to exogenous VIP (P < 0.05); however, combined H1-receptor inhibition and NO synthase inhibition further reduced VIP-mediated vasodilation compared with either H1 inhibition or NO synthase inhibition alone (P < 0.05). In contrast to H1-receptor inhibition, H2-receptor inhibition did not affect vasodilation to exogenous VIP. Thus, in human skin, VIP-mediated vasodilation includes a NO-dependent component that could not be explained by H1- and H2-receptor activation.Keywords
This publication has 46 references indexed in Scilit:
- Evidence for a Role for Vasoactive Intestinal Peptide in Active Vasodilatation in the Cutaneous Vasculature of HumansThe Journal of Physiology, 2003
- Nitric oxide is not permissive for cutaneous active vasodilatation in humansThe Journal of Physiology, 2003
- Differential Activation of Dual Signaling Responses by Human H1and H2Histamine ReceptorsJournal of Receptors and Signal Transduction, 2003
- Histamine response and local cooling in the human skin: involvement of H1‐ and H2‐receptorsBritish Journal of Clinical Pharmacology, 1999
- Predominant role for nitric oxide in the relaxation induced by vasoactive intestinal polypeptide in human uterine arteryMolecular Human Reproduction, 1998
- Role of endothelium and nitric oxide in histamine‐induced responses in human cranial arteries and detection of mRNA encoding H1‐ and H2‐receptors by RT‐PCRBritish Journal of Pharmacology, 1997
- The Effect of Iontophoresis on the Cutaneous Vasculature: Evidence for Current-Induced HyperemiaMicrovascular Research, 1995
- Histamine receptors in human skin: indirect evidenceBritish Journal of Dermatology, 1982
- ReplyJournal of Investigative Dermatology, 1981
- Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nervesBrain Research, 1976