Abstract
In this paper the effect of surface tension is included in a well-known problem in the theory of two-dimensional infinitesimal water waves. The problem is that of the reflection of waves from a fixed vertical barrier immersed to a depth a into deep water. It is shown how the solution for the velocity potential may be determined uniquely when simple assumptions are made concerning the behaviour of the free surface near the barrier. In particular, expressions are derived for the reflection coefficient, defined as the ratio of the amplitude of the reflected wave to that of the incident wave, at infinity, and the transmission coefficient, defined similarly. It is shown how these coefficients, for small values of the surface tension force, tend to the values obtained by Ursell (4) when surface tension is ignored. The related problem of a completely immersed vertical barrier extending to a distance a from the surface may be solved in a similar manner. Expressions for the reflection and transmission coefficients for this case are given.

This publication has 3 references indexed in Scilit: