Abstract
The weakly nonlinear, weakly damped response of the free surface of a liquid in a vertical circular cylinder that is subjected to a simple harmonic, horizontal translation is examined by extending the corresponding analysis for free oscillations. The problem is characterized by three parameters, α, β, and d/a, which measure damping, frequency offset (driving frequency–natural frequency), and depth/radius. The asymptotic (t↑∞) response may be any of: (i) harmonic (at the driving frequency) with a nodal line transverse to the plane of excitation (planar harmonic); (ii) harmonic with a rotating nodal line (non-planar harmonic); (iii) a periodically modulated sinusoid (limit cycle); (iv) a chaotically modulated sinusoid. It appears, from numerical integration of the evolution equations, that only motions of type (i) and (ii) are possible if 0.30 < d/a < 0.50, but that motions of type (iii) and (iv) are possible for all other d/a in some interval (or intervals) of β if α is sufficiently small. Only motion of type (i) is possible if α exceeds a critical value that depends on d/a.

This publication has 5 references indexed in Scilit: