A Newly Synthesized Poly(ADP-Ribose) Polymerase Inhibitor, DR2313 [2-Methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]: Pharmacological Profiles, Neuroprotective Effects, and Therapeutic Time Window in Cerebral Ischemia in Rats
- 1 February 2005
- journal article
- research article
- Published by Elsevier in The Journal of Pharmacology and Experimental Therapeutics
- Vol. 312 (2) , 472-481
- https://doi.org/10.1124/jpet.104.075465
Abstract
We investigated the pharmacological profiles of DR2313 [2-methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]pyrimidine-4-one], a newly synthesized poly(ADP-ribose) polymerase (PARP) inhibitor, and its neuroprotective effects on ischemic injuries in vitro and in vivo. DR2313 competitively inhibited poly(ADP-ribosyl)ation in nuclear extracts of rat brain in vitro (K(i) = 0.23 microM). Among several NAD(+)-utilizing enzymes, DR2313 was specific for PARP but not selective between PARP-1 and PARP-2. DR2313 also showed excellent profiles in water solubility and rat brain penetrability. In in vitro models of cerebral ischemia, exposure to hydrogen peroxide or glutamate induced cell death with overactivation of PARP, and treatment with DR2313 reduced excessive formation of poly(ADP-ribose) and cell death. In both permanent and transient focal ischemia models in rats, pretreatment with DR2313 (10 mg/kg i.v. bolus and 10 mg/kg/h i.v. infusion for 6 h) significantly reduced the cortical infarct volume. To determine the therapeutic time window of neuroprotection by DR2313, the effect of post-treatment was examined in transient focal ischemia model and compared with that of a free radical scavenger, MCI-186 (3-methyl-1-phenyl-2-pyrazolone-5-one). Pretreatment with MCI-186 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. infusion for 6 h) significantly reduced the infarct volume, whereas the post-treatment failed to show any effects. In contrast, post-treatment with DR2313 (same regimen) delaying for 2 h after ischemia still prevented the progression of infarction. These results indicate that DR2313 exerts neuroprotective effects via its potent PARP inhibition, even when the treatment is initiated after ischemia. Thus, a PARP inhibitor like DR2313 may be more useful in treating acute stroke than a free radical scavenger.This publication has 38 references indexed in Scilit:
- Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortexNeuroscience Letters, 2003
- Novel Isoquinolinone-Derived Inhibitors of Poly(ADP-ribose) Polymerase-1: Pharmacological Characterization and Neuroprotective Effects in an in Vitro Model of Cerebral IschemiaThe Journal of Pharmacology and Experimental Therapeutics, 2003
- Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisitedTrends in Pharmacological Sciences, 2002
- Modeling of Poly(ADP-ribose)polymerase (PARP) Inhibitors. Docking of Ligands and Quantitative Structure−Activity Relationship AnalysisJournal of Medicinal Chemistry, 2001
- Reactive Oxygen Radicals in Signaling and Damage in the Ischemic BrainJournal of Cerebral Blood Flow & Metabolism, 2001
- Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functionsBiochemical Journal, 1999
- PARP-2, A Novel Mammalian DNA Damage-dependent Poly(ADP-ribose) PolymeraseJournal of Biological Chemistry, 1999
- A reliable procedure for comparison of antioxidants in rat brain homogenatesJournal of Pharmacological and Toxicological Methods, 1998
- Chapter 15 Nitric oxide in neurodegenerationPublished by Elsevier ,1998
- Synthesis of 11C-labelled benzamide compounds as potential tracers for poly(ADP-ribose) synthetaseApplied Radiation and Isotopes, 1994