AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes
- 1 July 1999
- journal article
- review article
- Published by American Physiological Society in American Journal of Physiology-Endocrinology and Metabolism
- Vol. 277 (1) , E1-E10
- https://doi.org/10.1152/ajpendo.1999.277.1.e1
Abstract
Adenosine 5′-monophosphate-activated protein kinase (AMPK) now appears to be a metabolic master switch, phosphorylating key target proteins that control flux through metabolic pathways of hepatic ketogenesis, cholesterol synthesis, lipogenesis, and triglyceride synthesis, adipocyte lipolysis, and skeletal muscle fatty acid oxidation. Recent evidence also implicates AMPK as being responsible for mediating the stimulation of glucose uptake induced by muscle contraction. In addition, the secretion of insulin by insulin secreting (INS-1) cells in culture is modulated by AMPK activation. The net effect of AMPK activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulation of insulin secretion by pancreatic β-cells. In skeletal muscle, AMPK is activated by contraction. Type 2 diabetes mellitus is likely to be a disease of numerous etiologies. However, defects or disuse (due to a sedentary lifestyle) of the AMPK signaling system would be predicted to result in many of the metabolic perturbations observed in Type 2 diabetes mellitus. Increased recruitment of the AMPK signaling system, either by exercise or pharmaceutical activators, may be effective in correcting insulin resistance in patients with forms of impaired glucose tolerance and Type 2 diabetes resulting from defects in the insulin signaling cascade.Keywords
This publication has 72 references indexed in Scilit:
- Similar substrate recognition motifs for mammalian AMP‐activated protein kinase, higher plant HMG‐CoA reductase kinase‐A, yeast SNF1, and mammalian calmodulin‐dependent protein kinase IPublished by Wiley ,2000
- Exercise in the Management of Non???Insulin-Dependent Diabetes MellitusSports Medicine, 1998
- The α1 and α2 isoforms of the AMP‐activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitroFEBS Letters, 1996
- Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR — an activator of AMP‐activated protein kinaseFEBS Letters, 1996
- Mammalian AMP-activated Protein Kinase SubfamilyJournal of Biological Chemistry, 1996
- 5′‐AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP‐activated protein kinase. Studies using bacterially expressed human protein phosphatase‐2Cα and native bovine protein phosphatase‐2AcFEBS Letters, 1995
- Purification and Characterization of Rat Skeletal Muscle Acetyl-CoA CarboxylaseEuropean Journal of Biochemistry, 1995
- Molecular cloning, expression and chromosomal localisation of human AMP‐activated protein kinaseFEBS Letters, 1994
- Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell‐permeable activator of AMP‐activated protein kinaseFEBS Letters, 1994
- Role of the AMP-activated protein kinase in the cellular stress responseCurrent Biology, 1994