Charge injection into light-emitting diodes: Theory and experiment

Abstract
An analytic theory is presented for dark injection from a metallic electrode into a random hopping system, e.g., a conjugated polymer or a molecularly doped polymer. It encompasses injection of a charge carrier from the Fermi level of the electrode into tail states of the distribution of hopping states of the dielectric followed by either return of the charge carrier to the electrode or diffusive escape from the attractive image potential. The latter process resembles Onsager-type geminate pair dissociation in one dimension. The theory yields the injection current as a function of electric field, temperature and energetic width of the distribution of hopping states. At high electric fields it resembles that the current calculated from Fowler-Nordheim tunneling theory although tunneling transitions are not included in the theory. Good agreement with experimental data obtained for diode structures with conjugated polymers as a dielectric is found.