Vibrations of strongly irregular or fractal resonators

Abstract
It is shown on a specific example that fractal boundary conditions drastically alter the properties of wave excitations in space. The low-frequency part of the vibration spectrum of a finite-range fractal drum is computed using an analogy between the Helmoltz equation and the diffusion equation. The irregularity of the frontier is found to influence strongly the density of states at low frequency. The fractal perimeter generates a specific screening effect. Very near the frontier, the decrease of the wave form is related directly to the behavior of the harmonic measure. The possibility of localization of the vibrations is qualitatively discussed and we show that localized modes may exist at low frequencies if the geometrical structures possess narrow paths. Possible application of these results to the interpretation of thermal properties of binary glasses is briefly discussed.

This publication has 9 references indexed in Scilit: