Activation of Protease-Activated Receptor (PAR)-1, PAR-2, and PAR-4 Stimulates IL-6, IL-8, and Prostaglandin E2 Release from Human Respiratory Epithelial Cells

Top Cited Papers
Open Access
Abstract
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE2 production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 μM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE2 from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca2+ ion shutoff was ∼2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung.

This publication has 62 references indexed in Scilit: