Abstract
The time-dependent properties of an inclined interface separating up and down spin regions in a two-dimensional nearest-neighbour Ising model evolving under Glauber dynamics in a non-zero field are studied. In the limit of large exchange coupling, the model reduces to the single-step model for ballistic growth and thence to the asymmetric exclusion process which describes a driven diffusive system of hard core particles on a one-dimensional lattice. The drift velocity of the interface is found as a function of field, temperature and inclination, and interface correlation functions are related to sliding tag correlation functions in the particle system. The existence of a critical value of the sliding-tag velocity implies that there is an inclination-dependent easy direction along which temporal interface fluctuations grow subdiffusively. This direction is found, as is the asymptotic behaviour of the correlation function in all other directions.

This publication has 23 references indexed in Scilit: