Abstract
The understanding of cardiac action potential and membrane currents has broadened the theoretical foundation and enhanced the clinical usefulness of the electrocardiogram. An improved understanding of the morphology of the electrocardiographic waveform has resulted from: correlations between Vmax of depolarization and QRS complex, plateau of the ventricular action potential and S-T segment, terminal repolarization and T-wave, from definitions of action potential differences responsible for the T-wave, and recordings of action potential alternans. Cellular electrophysiology has contributed to the understanding of certain mechanisms of cardiac standstill. Many disturbances of conduction and refractoriness associated with ventricular arrhythmias can be attributed to the following derangements at the cellular level: slowing of terminal repolarization, development of diastolic depolarization in fibers with stable resting membrane potential, afterdepolarizations, currents of injury resulting from non-uniform polarization, increased dispersion of action potential durations, and co-existence of slow conduction and short premature action potentials.