Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots

Abstract
Optical characterization of AlGaAs microdisk resonant cavities with a quantum dot active region is presented. Direct passive measurement of the optical loss within AlGaAs microdisk resonant structures embedded with InAs/InGaAs dots-in-a-well (DWELL) is performed using an optical-fiber-based probing technique at a wavelength (lambda~1400 nm) that is red-detuned from the dot emission wavelength (lambda~1200 nm). Measurements in the 1400 nm wavelength band on microdisks of diameter D = 4.5 microns show that these structures support modes with cold-cavity quality factors as high as 360,000. DWELL-containing microdisks are then studied through optical pumping at room temperature. Pulsed lasing at lambda ~ 1200 nm is seen for cavities containing a single layer of InAs dots, with threshold values of ~ 17 microWatts, approaching the estimated material transparency level. Room-temperature continuous wave operation is also observed.

This publication has 0 references indexed in Scilit: