Measurement of Specific Absorption Rate and Thermal Simulation for Arterial Embolization Hyperthermia in the Maghemite-Gelled Model

Abstract
Theoretical models are designed to be applied in hyperthermia treatment planning and to help optimize the surgical treatment procedures. However, it is difficult to obtain every physical parameter of the magnetic field in the living tissue in detail, which is necessary for the calculation. We therefore investigated the simulation of thermal distribution in arterial embolization hyperthermia (AEH) stimulated by the external ferrite-core applicator, and measured specific absorption rate (SAR) of magnetic nanoparticles in the maghemtite-gelled composite model. We used fiber optic temperature sensors (FOTS) to measure the values of SAR, which depend on the microstructure and sizes of particles and the intensity and frequency of external ac magnetic field. Detailed tests indicated that the attenuation of magnetic field was mainly focused on the vertical distance in the aperture of the apparatus. We built a simplified cylindrical phantom containing maghemite particles of 20 nm for thermal field simulation on the basis of SAR measurement. The results of simulation indicated that temperature elevation, induced by nanoparticles inside tumors under ac magnetic field, was dose-dependent. The temperature data acquired from the experiment were compatible with the theoretical results, which demonstrated that the current model considering the inhomogenous heat generation could provide accurate and reliable simulation results and a theoretical and technical basis for controlling temperature during AEH therapy