Immortalization of Primary Human Prostate Epithelial Cells by c-Myc
Open Access
- 15 March 2005
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 65 (6) , 2179-2185
- https://doi.org/10.1158/0008-5472.can-03-4030
Abstract
Hyaluronic acid and HYAL1-type hyaluronidase show high accuracy in detecting bladder cancer and evaluating its grade, respectively. Hyaluronic acid promotes tumor progression; however, the functions of hyaluronidase in cancer are largely unknown. In this study, we stably transfected HT1376 bladder cancer cells with HYAL1-sense (HYAL1-S), HYAL1-antisense (HYAL1-AS), or vector cDNA constructs. Whereas HYAL1-S transfectants produced 3-fold more HYAL1 than vector transfectants, HYAL1-AS transfectants showed ∼90% reduction in HYAL1 production. HYAL1-AS transfectants grew four times slower than vector and HYAL1-S transfectants and were blocked in the G2-M phase of the cell cycle. The expression of cdc25c and cyclin B1 and cdc2/p34-associated H1 histone kinase activity also decreased in HYAL1-AS transfectants. HYAL1-S transfectants were 30% to 44% more invasive, and HYAL1-AS transfectants were ∼50% less invasive than the vector transfectants in vitro. In xenografts, there was a 4- to 5-fold delay in the generation of palpable HYAL1-AS tumors, and the weight of HYAL1-AS tumors was 9- to 17-fold less than vector and HYAL1-S tumors, respectively (P < 0.001). Whereas HYAL1-S and vector tumors infiltrated skeletal muscle and blood vessels, HYAL1-AS tumors resembled benign neoplasia. HYAL1-S and vector tumors expressed significantly higher amounts of HYAL1 (in tumor cells) and hyaluronic acid (in tumor-associated stroma) than HYAL1-AS tumors. Microvessel density in HYAL1-S tumors was 3.8- and 9.5-fold higher than that in vector and HYAL1-AS tumors, respectively. These results show that HYAL1 expression in bladder cancer cells regulates tumor growth and progression and therefore serves as a marker for high-grade bladder cancer.Keywords
All Related Versions
This publication has 51 references indexed in Scilit:
- Normal Human Fibroblasts Are Resistant to RAS-Induced SenescenceMolecular and Cellular Biology, 2004
- Abolition of Cyclin-Dependent Kinase Inhibitor p16Ink4a and p21Cip1/Waf1 Functions Permits Ras-Induced Anchorage-Independent Growth in Telomerase-Immortalized Human FibroblastsMolecular and Cellular Biology, 2003
- Focus on prostate cancerCancer Cell, 2002
- Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cellsOncogene, 2001
- Biological activities and molecular targets of the human papillomavirus E7 oncoproteinOncogene, 2001
- Genetic Alterations in Hormone-Refractory Recurrent Prostate CarcinomasThe American Journal of Pathology, 1998
- Myc activates telomeraseGenes & Development, 1998
- Extension of Life-Span by Introduction of Telomerase into Normal Human CellsScience, 1998
- A survey of telomerase activity in human cancerPublished by Elsevier ,1997
- Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4aCell, 1997