Observations on oblique shock waves in gaseous detonations
- 1 September 1963
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 17 (1) , 21-32
- https://doi.org/10.1017/s0022112063001075
Abstract
An account is given of photographic and pressure observations made on the oblique shock waves occurring in the wake of self-sustaining detonation waves in hydrogen-oxygen mixtures initially at atmospheric pressure. Four explosion tubes were employed, of which three are of circular cross-section with internal diameters of 10, 5 and 1·6 cm and the fourth is a square-section tube of side 1·5 in.On the assumption that the oblique shocks are sufficiently weak to be regarded as Mach waves, the flow Mach number relative to the detonation front is determined; these are found to be substantially higher than the values predicted by deal one-dimensional theory. The measured flow Mach numbers in the rarefaction are then used to calculate the pressure distribution in this region on the basis of the supersonic nozzle model due to Fay (1959, 1962). The predictions of this model are found to disagree with with the observed static pressure profiles. Moreover, the pressure following the initial peak persists at a higher value than the theoretical for distances of the order of 5–10 cm behind the front. This phenomenon implies that the wall boundary-layer pressure remains higher than the C-J value and it is suggested that the pressure difference across the boundary layer can account for the formation of the oblique waves.The supersonic features of the flow can be accounted for by the turbulent-structure hypothesis of White (1961). Some validation of this hypothesis is provided here by the observation of the absence of the oblique shocks in overdriven detonation waves caused by the diminished effects of turbulence. This observation is consistent with the view that the oblique shocks are generated by the pressure difference across the boundary layer near the front as this difference would also be diminished in an over-driven wave.Keywords
This publication has 11 references indexed in Scilit:
- Turbulent Structure of Gaseous DetonationPhysics of Fluids, 1961
- Vibration phenomena in detonation waves in hydrogen-oxygen mixturesBritish Journal of Applied Physics, 1960
- Pressure and velocity measurements on detonation waves in hydrogen-oxygen mixturesJournal of Fluid Mechanics, 1959
- Two-Dimensional Gaseous Detonations: Velocity DeficitPhysics of Fluids, 1959
- Two-Dimensional Effects in Gaseous Detonation WavesThe Journal of Chemical Physics, 1958
- Precision Flash X-Ray Determination of Density Ratio in Gaseous DetonationsPhysics of Fluids, 1958
- Gaseous Detonations. VII. A Study of Thermodynamic Equilibration in Acetylene-Oxygen WavesThe Journal of Chemical Physics, 1955
- Gaseous Detonations. VI. The Rarefaction WaveThe Journal of Chemical Physics, 1955
- On the structure of plane detonation waves with finite reaction velocitySymposium (International) on Combustion, 1953
- The dynamics of the combustion products behind plane and spherical detonation fronts in explosivesProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950