Hidden Likelihood Support in Genomic Data: Can Forty-Five Wrongs Make a Right?
Open Access
- 1 June 2005
- journal article
- research article
- Published by Oxford University Press (OUP) in Systematic Biology
- Vol. 54 (3) , 483-492
- https://doi.org/10.1080/10635150590945368
Abstract
Combined analysis of multiple phylogenetic data sets can reveal emergent character support that is not evident in separate analyses of individual data sets. Previous parsimony analyses have shown that this hidden support often accounts for a large percentage of the overall phylogenetic signal in cladistic studies. Here, reanalysis of a large comparative genomic data set for yeast (genus Saccharomyces) demonstrates that hidden support can be an important factor in maximum likelihood analyses of multiple data sets as well. Emergent signal in a concatenation of 106 genes was responsible for up to 64% of the likelihood support at a particular node (the difference in log likelihood scores between optimal topologies that included and excluded a supported clade). A grouping of four yeast species (S. cerevisiae, S. paradoxus, S. mikatae, and S. kudriavzevii) was robustly supported by combined analysis of all 106 genes, but separate analyses of individual genes suggested numerous conflicts. Forty-eight genes strictly contradicted S. cerevisiae + S. paradoxus + S. mikatae + S. kudriavzevii in separate analyses, but combined likelihood analyses that included up to 45 of the “wrong” data sets supported this group. Extensive hidden support also emerged in a combined likelihood analysis of 41 genes that each recovered the exact same topology in separate analyses of the individual genes. These results show that isolated analyses of individual data sets can mask congruence and distort interpretations of clade stability, even in strictly model-based phylogenetic methods. Consensus and supertree procedures that ignore hidden phylogenetic signals are, at best, incomplete.Keywords
This publication has 57 references indexed in Scilit:
- The (Super)Tree of Life: Procedures, Problems, and ProspectsAnnual Review of Ecology and Systematics, 2002
- The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium , Entamoeba , and MastigamoebaProceedings of the National Academy of Sciences, 2002
- Is morphology still relevant?Published by Springer Nature ,2002
- Multiple Sources of Character Information and the Phylogeny of Hawaiian DrosophilidsSystematic Biology, 1997
- Cladistic analysis of Heliconius butterflies and relatives (Nymphalidae: Heliconiiti): a revised phylogenetic position for Eueides based on sequences from mtDNA and a nuclear geneProceedings Of The Royal Society B-Biological Sciences, 1997
- BRANCH SUPPORT AND TREE STABILITYCladistics, 1994
- Partitioning and Combining Data in Phylogenetic AnalysisSystematic Biology, 1993
- Against ConsensusSystematic Zoology, 1991
- THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTIONEvolution, 1988
- A new look at the statistical model identificationIEEE Transactions on Automatic Control, 1974