Contribution of Salt Bridges near the Surface of a Protein to the Conformational Stability,
- 13 September 2000
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 39 (40) , 12375-12381
- https://doi.org/10.1021/bi000849s
Abstract
Salt bridges play important roles in the conformational stability of proteins. However, the effect of a surface salt bridge on the stability remains controversial even today; some reports have shown little contribution of a surface salt bridge to stability, whereas others have shown a favorable contribution. In this study, to elucidate the net contribution of a surface salt bridge to the conformational stability of a protein, systematic mutant human lysozymes, containing one Glu to Gln (E7Q) and five Asp to Asn mutations (D18N, D49N, D67N, D102N, and D120N) at residues where a salt bridge is formed near the surface in the wild-type structure, were examined. The thermodynamic parameters for denaturation between pH 2.0 and 4.8 were determined by use of a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. The denaturation Gibbs energy (ΔG) of all mutant proteins was lower than that of the wild-type protein at pH 4, whereas there was little difference between them near pH 2. This is caused by the fact that the Glu and Asp residues are ionized at pH 4 but protonated at pH 2, indicating a favorable contribution of salt bridges to the wild-type structure at pH 4. Each contribution was not equivalent, but we found that the contributions correlate with the solvent inaccessibility of the salt bridges; the salt bridge contribution was small when 100% accessible, while it was about 9 kJ/mol if 100% inaccessible. This conclusion indicates how to reconcile a number of conflicting reports about role of surface salt bridges in protein stability. Furthermore, the effect of salts on surface salt bridges was also examined. In the presence of 0.2 M KCl, the stability at pH 4 decreased, and the differences in stability between the wild-type and mutant proteins were smaller than those in the absence of salts, indicating the compensation to the contribution of salt bridges with salts. Salt bridges with more than 50% accessibility did not contribute to the stability in the presence of 0.2 M KCl.Keywords
This publication has 16 references indexed in Scilit:
- Strength and co-operativity of contributions of surface salt bridges to protein stabilityPublished by Elsevier ,2006
- Salt bridge stability in monomeric proteins 1 1Edited by J. M. ThorntonJournal of Molecular Biology, 1999
- Electrostatic contributions to the stability of hyperthermophilic proteinsJournal of Molecular Biology, 1999
- Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosusJournal of Molecular Biology, 1998
- A general rule for the relationship between hydrophobic effect and conformational stability of a protein: stability and structure of a series of hydrophobic mutants of human lysozymeJournal of Molecular Biology, 1998
- Contribution of water molecules in the interior of a protein to the conformational stabilityJournal of Molecular Biology, 1997
- Contribution of Hydrophobic Residues to the Stability of Human Lysozyme: Calorimetric Studies and X-ray Structural Analysis of the Five Isoleucine to Valine MutantsJournal of Molecular Biology, 1995
- Effects of engineered salt bridges on the stability of subtilisin BPN'Protein Engineering, Design and Selection, 1990
- Surface, subunit interfaces and interior of oligomeric proteinsJournal of Molecular Biology, 1988
- Ion-pairs in proteinsJournal of Molecular Biology, 1983