Initial Behavior of a Spherical Blast
- 1 November 1952
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 23 (11) , 1269-1275
- https://doi.org/10.1063/1.1702047
Abstract
At time t=0 a unit sphere containing a perfect gas at uniformly high pressure is allowed to expand suddenly into a homogeneous atmosphere. Solutions for short times later are sought by analytic (i.e., not numerical) methods. Viscosity and heat conduction are neglected. The particle velocity,sound speed, and entropy are developed in powers of y, which is proportional to the time (more precisely, the distance moved by the head of the rarefaction wave in time t), with coefficients depending on a slope coordinate q=(1/2N)[(2N−1) +(1−x)/y], where x is the radial coordinate, N=(½)(γ+1)/(γ−1), and γ is the ratio of specific heats. The zero‐order coefficients are the plane shock‐tube solution. First‐order corrections are derived for the various regions. Boundary conditions are approximated for small y at the surfaces of discontinuity, and the method for matching the solutions in the different regions is outlined. This matching process is carried out for the expansion of a diatomic gas into diatomic air.This publication has 4 references indexed in Scilit:
- The propagation of spherical blastProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950
- A Method for the Numerical Calculation of Hydrodynamic ShocksJournal of Applied Physics, 1950
- Expansion einer Gaskugel hohen DruckesZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1950
- Shock waves and the propagation of finite pulses in fluidsReports on Progress in Physics, 1950