Link Invariants of Finite Type and Perturbation Theory
Preprint
- 13 July 1992
Abstract
The Vassiliev-Gusarov link invariants of finite type are known to be closely related to perturbation theory for Chern-Simons theory. In order to clarify the perturbative nature of such link invariants, we introduce an algebra V_infinity containing elements g_i satisfying the usual braid group relations and elements a_i satisfying g_i - g_i^{-1} = epsilon a_i, where epsilon is a formal variable that may be regarded as measuring the failure of g_i^2 to equal 1. Topologically, the elements a_i signify crossings. We show that a large class of link invariants of finite type are in one-to-one correspondence with homogeneous Markov traces on V_infinity. We sketch a possible application of link invariants of finite type to a manifestly diffeomorphism-invariant perturbation theory for quantum gravity in the loop representation.Keywords
All Related Versions
- Version 1, 1992-07-13, ArXiv
- Published version: Letters in Mathematical Physics, 26 (1), 43.
This publication has 0 references indexed in Scilit: