Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells
- 1 November 1994
- journal article
- Published by Springer Nature in British Journal of Cancer
- Vol. 70 (5) , 914-921
- https://doi.org/10.1038/bjc.1994.420
Abstract
As an approach to the rational design of combination chemotherapy involving the anti-cancer DNA topoisomerase II poison etoposide (VP-16), we have studied the dynamic changes occurring in small-cell lung cancer (SCLC) cell populations during protracted VP-16 exposure. Cytometric methods were used to analyse changes in target enzyme availability and cell cycle progression in a SCLC cell line, mutant for the tumour-suppressor gene p53 and defective in the ability to arrest at the G1/S phase boundary. At concentrations up to 0.25 microM VP-16, cells became arrested in G2 by 24 h exposure, whereas at concentrations 0.25-2 microM G2 arrest was preceded by a dose-dependent early S-phase delay, confirmed by bromodeoxyuridine incorporation. Recovery potential was determined by stathmokinetic analysis and was studied further in aphidicolin-synchronised cultures released from G1/S and subsequently exposed to VP-16 in early S-phase. Cells not experiencing a VP-16-induced S-phase delay entered G2 delay dependent upon the continued presence of VP-16. These cells could progress to mitosis during a 6-24 h period after drug removal. Cells experiencing an early S-phase delay remained in long-term G2 arrest with greatly reducing ability to enter mitosis up to 24 h after removal of VP-16. Irreversible G2 arrest was delimited by the induction of significant levels of DNA cleavage or fragmentation, not associated with overt apoptosis, in the majority of cells. Western blotting of whole-cell preparations showed increases in topoisomerase II levels (up to 4-fold) attributable to cell cycle redistribution, while nuclei from cells recovering from S-phase delay showed enhanced immunoreactivity with an anti-topoisomerase II alpha antibody. The results imply that traverse of G1/S and early S-phase in the presence of a specific topoisomerase II poison gives rise to progressive low-level trapping of topoisomerase II alpha, enhanced topoisomerase II alpha availability and the subsequent irreversible arrest in G2 of cells showing limited DNA fragmentation. We suggest that protracted, low-dose chemotherapeutic regimens incorporating VP-16 are preferentially active towards cells attempting G1/S transition and have the potential for increasing the subsequent action of other topoisomerase II-targeted agents through target enzyme modulation. Combination modalities which prevent such dynamic changes occurring would act to reduce the effectiveness of the VP-16 component.Keywords
This publication has 32 references indexed in Scilit:
- Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53Published by Elsevier ,1992
- p53, guardian of the genomeNature, 1992
- A phase II trial of cisplatin and prolonged administration of oral etoposide in extensive-stage small cell lung cancerCancer, 1992
- Simultaneous Measurement of Cell Cycle Phase Position and Ionizing Radiation-induced DNA Strand Breakage in Single Human Tumour Cells Using Laser Scanning Confocal ImagingInternational Journal of Radiation Biology, 1992
- The p53 tumour suppressor geneNature, 1991
- Subpopulation analysis of drug-induced cell-cycle delay in human tumor cells using 90° light scatterCytometry, 1988
- A simple technique for quantitation of low levels of DNA damage in individual cellsExperimental Cell Research, 1988
- Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase IIBiochemistry, 1986
- Benefits of HLA-A and HLA-B Matching on Graft and Patient Outcome after Cadaveric-Donor Renal TransplantationNew England Journal of Medicine, 1984
- SCHEDULE DEPENDENCY OF THE ANTILEUKEMIC ACTIVITY OF THE PODOPHYLLOTOXIN‐DERIVATIVE VP 16–213 (NSC‐141540) IN L1210 LEUKEMIAActa Pathologica Microbiologica Scandinavica Section A Pathology, 1973