Design of stereoselective Ziegler–Natta propene polymerization catalysts

Abstract
After five decades of largely serendipitous (albeit formidable) progress, catalyst design in Ziegler-Natta olefin polymerization, i.e., the rational implementation of new active species to target predetermined polyolefin architectures, has ultimately become a realistic ambition, thanks to a much deeper fundamental understanding and major advances in the tools of computational chemistry. In this article, we discuss, as a case history, a unique class of stereorigid C2-symmetric bis(phenoxy-amine)Zr(IV) catalysts with controlled kinetic behavior. A large variety of polypropylene microstructures have been obtained with these catalysts by modulating the steric demand of one key substituent, without altering the nature and symmetry of the ancillary ligand framework, under the guidance of computer modeling. This unusual achievement is relevant per se and for the perspective implications in catalyst discovery.

This publication has 28 references indexed in Scilit: