Delayed Maturation and Sensitive Periods in the Auditory Cortex

Abstract
Behavioral data indicate the existence of sensitive periods in the development of audition and language. Neurophysiological data demonstrate deficits in the cerebral cortex of auditory-deprived animals, mainly in reduced cochleotopy and deficits in corticocortical and corticothalamic loops. In addition to current spread in the cochlea, reduced cochleotopy leads to channel interactions after cochlear implantation. Deficits in corticocortical and corticothalamic loops interfere with normal processing of auditory activity in cortical areas. Thus, the deprived auditory cortex cannot mature normally in congenital deafness. This maturation can be achieved using auditory experience through cochlear implants. However, implantation is necessary within the sensitive period of the auditory system. The functional role of long-term potentiation and long-term depression, inhibition, cholinergic modulation and neurotrophins in auditory development and sensitive periods are discussed.