Potassium Inactivation and Impedance Changes during Spike Electrogenesis in Eel Electroplaques

Abstract
Various degrees of pharmacological K inactivation were induced by Cs or Ba in isolated single electroplaques of the electric eel. The resulting changes in K conductance give rise to very different steady-state current-voltage characteristics. They also induce differences in ion dynamics during spike electrogenesis. The dynamic changes were studied by AC bridge methods, registering the changes in impedance in synchrony with the neurally or directly evoked spikes. While spike electrogenesis was virtually unaffected by addition of Cs or Ba, the patterns of impedance changes were very different. The various patterns are accounted for by the changes in the respective current-voltage characteristics. The data constitute new evidence for regarding the electrically excitable component of the reactive membrane as a heterogeneous electrochemical system with separate and independently reactive channels that in the electroplaques are permselective for Na and K, respectively.