Abstract
This thesis examines the use of sound to present data. Computer graphics currently offers a vast array of techniques for communicating data to analysts. Graphics is limited, however, by the number of dimensions that can be perceived at one time, by the types of data that lend themselves to visual representation, and by the necessary eye focus on the output. Sound offers an enhancement and an alternative to graphic tools. Multivariate, logarithmic, and time-varying data provide examples for aural representation. For each of these three types of data, the thesis suggests a method of encoding the information into sound and presents various applications. Data values were mapped to sound characteristics such as pitch and volume so that information was presented as sets or sequences of notes. In all cases, the resulting sounds conveyed information in a manner consistent with prior knowledge of the data. Experiments showed that sound does convey information accurately and that sound can enhance graphic presentations. Subjects were tested on their ability to distinguish between two sources of test items. In the first phase of the experiments, subjects discriminated between two 6-dimensional data sets represented in sound. In the second phase of the experiment, 75 subjects weremore » selected and assigned to one of three groups. The first group of 25 heard test items, the second group saw test items, and the third group both heard and saw the test items. The average percentage correct was 64.5% for the sound-only group, 62% for the graphics-only group, and 69% for the sound and graphics group. In the third phase, additional experiments focused on the mapping between data values and sound characteristics and on the training methods. « less

This publication has 0 references indexed in Scilit: