Abstract
A point particle of mass m moving on a geodesic creates a perturbation h, of the spacetime metric g, that diverges at the particle. Simple expressions are given for the singular m/r part of h and its quadrupole distortion caused by the spacetime. Subtracting these from h leaves a remainder h^R that is C^1. The self-force on the particle from its own gravitational field corrects the worldline at O(m) to be a geodesic of g+h^R. For the case that the particle is a small non-rotating black hole, an approximate solution to the Einstein equations is given with error of O(m^2) as m approaches 0.

This publication has 0 references indexed in Scilit: