Abstract
A description of a bounce-averaged Fokker–Planck quasilinear model for the kinetic description of tokamak plasmas is presented. The nonlinear collision and quasilinear resonant diffusion operators are represented in a form conducive to numerical solution with specific attention to the treatment of the boundary layer separating trapped and passing orbit regions of velocity space. The numerical techniques employed are detailed insofar as they constitute significant departure from those used in the conventional uniform magnetic field case. Examples are given to illustrate the combined effects of collisional and resonant diffusion.