Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber

Abstract
We report on the generation of a continuous variable Einstein-Podolsky-Rosen (EPR) entanglement using an optical fiber interferometer. The Kerr nonlinearity in the fiber is exploited for the generation of two independent squeezed beams. These interfere at a beam splitter and EPR entanglement is obtained between the output beams. The correlation of the amplitude (phase) quadratures is measured to be 4.0±0.2 (4.0±0.4)dB below the quantum noise limit. The sum criterion for these squeezing variances 0.80±0.03<2 verifies the nonseparability of the state. The product of the inferred uncertainties for one beam (0.64±0.08) is well below the EPR limit of unity.
All Related Versions