Forced liénard equations with nonlocal nonlinearities
- 1 May 1986
- journal article
- research article
- Published by Taylor & Francis in Applicable Analysis
- Vol. 21 (4) , 339-346
- https://doi.org/10.1080/00036818608839600
Abstract
We approximate the operator equation Au+g(u)= h by the averaged system Av + PSPJ.v=h ,3 2llvll P Min the Hilbert space &= L (ft) where ft c Rn has finite mass M .We solvethe system explicitly and discuss the dependence of its solutions as g and h are varied.We extend our analysistoan operator equation which contains a damping termKeywords
This publication has 2 references indexed in Scilit:
- Approximations to periodic solutions of a Duffing equationZeitschrift für angewandte Mathematik und Physik, 1983
- On a conjecture related to the number of solutions of a nonlinear Dirichlet problemProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1983