Change in Photosynthetic Capacity over the Cell Cycle in Light/Dark-Synchronized Amphidinium carteri Is Due Solely to the Photocycle

Abstract
Cell cycle dependent photosynthesis in the marine dinoflagellate Amphidinium carteri was studied under constant illumination and light/dark (L/D) photocycles to distinguish intrinsic cell cycle control from environmental influences. Cells were grown in constant light and on a 14:10 L:D cycle at light intensities that would yield a population growth rate of 1 doubling per day. In the former case division was asynchronous, and cells were separated according to cell cycle stage using centrifugal elutriation. Cells grown on the L:D cycle were synchronized, with division restricted to the dark period. Cell cycle stage distributions were quantified by flow cytometry. Various cell age groups from the two populations were compared as to their photosynthetic response (photosynthetic rate versus irradiance) to determine whether or not the response was modulated primarily by cell cycle constraints or the periodic L/D cycle. Cell cycle variation in photosynthetic capacity was found to be determined solely by the L/D cycle; it was not present in cells grown in constant light.
Keywords