Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adélie, Antarctica)

Abstract
The debris-rich ice from the bottom 6 m of the 82 m deep CAROLINE (Coastal Antarctic Record of Last Interglacial Natural Environment) ice core reaching bedrock, and from five 2 m long surface cores at Moraine Prudhomme in Terre Adélie (Antarctica) is described and compared to debris-laden ice from the core-drilling site DIO. Isotopic, total-gas content, CO2concentration and SEM investigations of embedded particles, together with ice textures and fabrics, rule out “pressure-melting” regelation around bed obstacles or “freezing-on” as possible mechanisms for the debris entrainment at the ice-bedrock interface. It is suggested that the debris entrapment by purely mechanical means (e.g. shearing) is an efficient process in forming basal ice layers (BIL) at sub-freezing temperatures. This process might be dominant at the margin of the Antarctic ice sheet where no ice shelf exists and where a ramp terminus or a buttressing coastal relief induces compressive flow.