On the Indecomposable Elements of the Bar Construction
- 1 October 1986
- journal article
- Published by JSTOR in Proceedings of the American Mathematical Society
- Vol. 98 (2) , 312-316
- https://doi.org/10.2307/2045704
Abstract
An explicit formula for a canonical splitting <!-- MATH $s:Q\mathcal{B}({\mathcal{E}^ \cdot }) \to \mathcal{B}({\mathcal{E}^ \cdot })$ --> of the projection <!-- MATH $\mathcal{B}({\mathcal{E}^ \cdot }) \to Q\mathcal{B}({\mathcal{E}^ \cdot })$ --> of the bar construction on a commutative d.g. algebra <!-- MATH ${\mathcal{E}^\cdot}$ --> onto its indecomposables is given. We prove that induces a d.g. algebra isomorphism <!-- MATH $\Lambda (Q\mathcal{B}({\mathcal{E}^\cdot})) \to \mathcal{B}({\mathcal{E}^\cdot})$ --> and that <!-- MATH $H(Q\mathcal{B}({\mathcal{E}^\cdot}))$ --> is isomorphic with <!-- MATH $QH(\mathcal{B}({\mathcal{E}^\cdot}))$ --> .
Keywords
This publication has 4 references indexed in Scilit:
- The Dual Poincaré-Birkhoff-Witt TheoremAdvances in Mathematics, 1985
- Iterated integrals and homotopy periodsMemoirs of the American Mathematical Society, 1984
- Rational Homotopy TheoryAnnals of Mathematics, 1969
- On the Structure of Hopf AlgebrasAnnals of Mathematics, 1965