MAPK regulation of maternal and zygotic Notch transcript stability in early development

Abstract
Spatiotemporal modulation of the evolutionarily conserved, intercellular Notch signaling pathway is important in the development of many animals. Examples include the regulation of neural-epidermal fate decisions in neurogenic ectoderm of Drosophila and somitogenesis in vertebrate presomitic mesoderm. In both these and most other cases, it appears that Notch-class transmembrane receptors are ubiquitously expressed. Modulation of the pathway is achieved primarily by the localized expression of the activating ligand or by alteration of receptor specificity through a glycosyl transferase. In contrast, we present this report of an instance where the abundance of the Notch-class mRNA itself is dynamically regulated. Taking advantage of the long cell cycle of the two-cell-stage embryo of the leech Helobdella robusta, we show that this regulation is achieved at the levels of both transcript stability and transcription. Moreover, MAPK signaling plays a significant role in regulating accumulation of the transcript by virtue of its effect on Hro-notch mRNA stability. Intracellular injection of heterologous reporter mRNAs shows that the Hro-notch 3' UTR, containing seven AU-rich elements, is key to regulating transcript stability. Thus, we show that regulation of the Notch pathway can occur at a previously underappreciated level, namely that of transcript stability. Given that AU-rich elements occur in the 3' UTR of Notch-class genes in Drosophila, human, and Caenorhabditis elegans, regulation of Notch signaling by modulation of mRNA levels may be operating in other animals as well.

This publication has 35 references indexed in Scilit: