Abstract
It is well known that the stationary distribution of the number of busy servers in the Erlang blocking system (M/G/c/c) depends on the service-time distribution only through its mean. This insensitivity property is shared by several other queueing systems. In this paper, we give simple sufficient conditions for determining if this insensitivity property holds for general queueing systems and related stochastic models. The conditions involve determining whether the solution of the stationary Markovian flow equations also solves certain restricted flow equations. The proof that these conditions are sufficient is direct and elementary.

This publication has 13 references indexed in Scilit: