Tight Junction Alterations of Respiratory Epithelium Following Long-Term NO2Exposure and Recovery
- 1 January 1986
- journal article
- research article
- Published by Taylor & Francis in Experimental Lung Research
- Vol. 11 (3) , 179-193
- https://doi.org/10.3109/01902148609064295
Abstract
Acute exposure to NO2 is reported to disrupt tight junctions in lung epithelium. We have studied the effects of chronic NO2 exposure and recovery breathing clean air to tight junctions of distal airway and alveolar epithelium. Syrian Golden hamsters were exposed to NO2 (30 PPM) for 5 or 9 months and a group of those animals for 9 months were allowed to recover breathing clean air for 3 or 9 months. Animals were sacrificed after 5 and 9 months of NO2 exposure and after 3, and 9 mos. recovery breathing clean air. The lungs were carefully removed, inflation fixed with glutaraldehyde and then processed for freeze fracture and transmission electron microscopy of ultra-thin epon sections. Evaluation of tight junctions of bronchioles and alveoli were disrupted in ultrathin sections and freeze fracture replicas during the period of NO2 exposure. Fibril number, length, degree of fragmentation and orientation were different from age matched controls. The bronchiolar tight junctional fibrils were quantitatively reduced in number and fragmented into much smaller fibril lengths. Alveolar tight junctions were qualitatively disrupted in a similar fashion, however, the sites of damage were focal. During recovery tight junctions in bronchioles did not regain normal fibril number, orientation and continuity, based on quantitative assessment, observed in age matched controls. Alveolar tight junctions remained focally altered. This data indicated that chronic NO2 altered morphologic characteristics of epithelial tight junctions of the lung throughout the period of exposure. The repair process during recovery did not restore the normal tight junction ultrastructural organization observed in age controls. This persistent deviation from the normal is likely to alter and compromise airway epithelial barrier function in the lungs of these hamsters.This publication has 15 references indexed in Scilit:
- Acute IMO2 Effects on Penetration and Transport of Horseradish Peroxidase in Hamster Respiratory EpitheliumAmerican Review of Respiratory Disease, 1983
- Acute bronchiolar injury following nitrogen dioxide exposure: A freeze fracture studyEnvironmental Research, 1982
- Ultrastructure of hamster bronchiolar epithelium in freeze fracture replicasLung, 1982
- A Quantitative Study of Ciliary Injury in the Small Airways of Mice: The Effects of Nitrogen DioxideExperimental Lung Research, 1981
- Heterogeneity of tight junction morphology in extrapulmonary and intrapulmonary airways of the ratThe Anatomical Record, 1980
- Lung Proteolytic Activity and Serum Protease Inhibition After NO2ExposureArchives of environmental health, 1976
- Effects of experimental emphysema and bronchiolitis on lung mechanics and morphometry.Journal of Applied Physiology, 1973
- Cell Renewal in the Lungs of Rats Exposed to Low Levels of NO2Archives of environmental health, 1972
- Emphysema After Low-Level Exposure to NO2Archives of environmental health, 1964
- Colorimetric Microdetermination of Nitrogen Dioxide in AtmosphereAnalytical Chemistry, 1954