Abstract
The reduction potentials of 40 aromatic nitro compounds Rπ(NO2)n with Rπ = benzene, naphthalene, anthracene, fluorene and carbazole and n = 1 to 4 nitro groups are determined by cyclic voltammetry in DMF under aprotic conditions. The perturbation by the strongly electron accepting substituents can be rationalized via correlation with HMO eigenvalues. Based on reversibility criteria, the electrochemical behaviour is discussed and the compounds are classified with respect to reversible or irreversible one-electron transfer as well as up to 4 (quasi)-reversible reduction steps. The CV data measured can be used to predict redox reactions of aromatic nitro compounds in inert solvents.

This publication has 0 references indexed in Scilit: