p34Cdc28-Mediated Control of Cln3 Cyclin Degradation
Open Access
- 1 February 1995
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 15 (2) , 731-741
- https://doi.org/10.1128/mcb.15.2.731
Abstract
Cln3 cyclin of the budding yeast Saccharomyces cerevisiae is a key regulator of Start, a cell cycle event in G1 phase at which cells become committed to division. The time of Start is sensitive to Cln3 levels, which in turn depend on the balance between synthesis and rapid degradation. Here we report that the breakdown of Cln3 is ubiquitin dependent and involves the ubiquitin-conjugating enzyme Cdc34 (Ubc3). The C-terminal tail of Cln3 functions as a transferable signal for degradation. Sequences important for Cln3 degradation are spread throughout the tail and consist largely of PEST elements, which have been previously suggested to target certain proteins for rapid turnover. The Cln3 tail also appears to contain multiple phosphorylation sites, and both phosphorylation and degradation of Cln3 are deficient in a cdc28ts mutant at the nonpermissive temperature. A point mutation at Ser-468, which lies within a Cdc28 kinase consensus site, causes approximately fivefold stabilization of a Cln3-beta-galactosidase fusion protein that contains a portion of the Cln3 tail and strongly reduces the phosphorylation of this protein. These data indicate that the degradation of Cln3 involves CDC28-dependent phosphorylation events.Keywords
This publication has 56 references indexed in Scilit:
- Regulation of V(D)J Recombination Activator Protein RAG-2 by PhosphorylationScience, 1993
- Control of the yeast cell cycle by the Cdc28 protein kinaseCurrent Opinion in Cell Biology, 1993
- An Inhibitor of p34
CDC28
Protein Kinase Activity from Saccharomyces cerevisiaeScience, 1993
- THE UBIQUITIN SYSTEM FOR PROTEIN DEGRADATIONAnnual Review of Biochemistry, 1992
- In vivo degradation of a transcriptional regulator: The yeast α2 repressorCell, 1990
- A Multiubiquitin Chain Is Confined to Specific Lysine in a Targeted Short-Lived ProteinScience, 1989
- New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sitesGene, 1988
- The Yeast Cell Cycle Gene CDC34 Encodes a Ubiquitin-Conjugating EnzymeScience, 1988
- In Vivo Half-Life of a Protein Is a Function of Its Amino-Terminal ResidueScience, 1986
- Genes which control cell proliferation in the yeast Saccharomyces cerevisiaeNature, 1980