Abstract
The transient deformation of liquid capsules enclosed by elastic membranes subject to simple shear flow is studied numerically using a new implementation of the boundary element method. The numerical results for capsules with spherical unstressed shapes and varying degrees of surface elasticity are compared with the predictions of an asymptotic theory for small deformations due to Barthès-Biesel and coworkers, and the significance of nonlinear effects due to finite deformation is assessed. It is found that the capsules exhibit continuous elongation when the dimensionless shear rate becomes larger than a critical threshold, in agreement with recent experimental observations of capsules with polymerized interfaces. Membrane failure at large deformations is discussed with respect to membrane thinning and development of excessive elastic tensions, and it is argued that the location where the membrane is likely to rupture due to continued deformation is insensitive to the precise mechanism of rupture. The numerical results suggest that a dilute suspension of capsules behaves like shear-thinning medium with some elastic properties. Results of oblate spheroidal capsules suggest that the points of maximum membrane thinning and tension coincide but their location depends upon the unstressed capsule shape.

This publication has 12 references indexed in Scilit: