Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent

Abstract
Under natural conditions gold has low solubility that reduces its bioavailability, a critical factor for phytoextraction. Researchers have found that phytoextraction can be improved by using synthetic chelating agents. Preliminary studies have shown that desert willow (Chilopsis linearis), a common inhabitant of the Chihuahuan Desert, is able to extract gold from a gold-enriched medium. The objective of the present study was to determine the ability of thiocyanate to enhance the gold-uptake capacity of C. linearis. Seedlings of this plant were exposed to the following hydroponics treatment: (1) 5 mg Au L−1 (2.5×10−5 mol L−1), (2) 5 mg Au L−1+10−5 mol L−1 NH4SCN, (3) 5 mg Au L−1+5×10−5 mol L−1 NH4SCN, and (4) 5 mg Au L−1+10−4 mol L−1 NH4SCN. Each treatment had its respective control. After 2 weeks we determined the effect of the treatment on plant growth and gold content by inductively coupled plasma–optical emission spectroscopy (ICP–OES). No signs of shoot-growth inhibition were observed at any NH4SCN treatment level. The ICP–OES analysis showed that addition of 10−4 mol L−1 NH4SCN increased the concentration of gold by about 595, 396, and 467% in roots, stems, and leaves, respectively. X-ray absorption spectroscopy (XAS) studies showed that the oxidation state of gold was Au(0) and that gold nanoparticles were formed inside the plants.