Abstract
In previous applications of an approximate machining theory in which account is taken of the strain rate and temperature dependence of the work material flow stress properties it has been found necessary to use an empirical relation to determine the maximum value of the maximum shear strain rate in the chip formation zone. In this paper the machining theory is further developed so that this strain rate can be obtained as part of the solution. Predicted values found in this way are shown to be in excellent agreement with the rather limited number of experimental strain rate results which are available. The paper ends by showing that if the work material is allowed to approach the ideal constant flow stress material usually assumed in slip-line field theory then the predicted strain rates become extremely large. However, it is still found necessary in calculating the corresponding hydrostatic stresses to use the stress equilibrium equations for a variable flow stress material as the variable flow stress terms do not diminish as rapidly as might have been expected.

This publication has 5 references indexed in Scilit: