Physical determinants of microbial colonization and decomposition of plant litter in an Arctic Lake

Abstract
Physical effects on the microbial colonization and decomposition of plant litter in an oligotrophic lake were studied in Toolik Lake, Alaska. Colonization, measured by adenosine triphosphate (ATP) analysis, and decomposition, measured by weight loss, were correlated with depth of incubation, light, and temperature. The effects of turbulence, light, and temperature were studied in microcosm experiments. A 10°C increase (above ambient) in temperature caused a doubling in the amount of microbial colonization and a 50% increase in decomposition. Light intensity had no quantitative effect on either colonization or decomposition. Turbulence experiments conducted in Toolik Lake showed significant differences in decomposition between natural turbulence and no turbulence. Elevated temperature (20°C, which was 10°C above ambient), high turbulence, and total darkness changed the composition of the litter microbiota, causing a shift from a bacterially dominated microbiota to one dominated by large filamentous forms, as revealed by scanning electron microscopy. This study shows the importance of these physical factors in determining the rate at which plant litter is colonized and degraded in aquatic environments.