The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.