Abstract
Smoothing splines are known to exhibit a type of boundary bias that can reduce their estimation efficiency. In this paper, a boundary corrected cubic smoothing spline is developed in a way that produces a uniformly fourth order estimator. The resulting estimator can be calculated efficiently using an O(n) algorithm that is designed for the computation of fitted values and associated smoothing parameter selection criteria. A simulation study shows that use of the boundary corrected estimator can improve estimation efficiency in finite samples. Applications to the construction of asymptotically valid pointwise confidence intervals are also investigated .

This publication has 12 references indexed in Scilit: