Adsorbed layers of oriented fibronectin: A strategy to control cell–surface interactions

Abstract
Fibronectin (Fn) is a matrix protein known to induce cell attachment and spreading through its cell binding site and related synergy sites. Fn‐coated surfaces are therefore useful in tissue engineering and other cell contacting applications, but a problem with many immobilization strategies is a random distribution of molecular orientations. We sought to control Fn orientation, and thus enhance the availability of its cell binding site, by immobilizing Fn via a carboxymethyl dextran layer onto which are chemically attached monoclonal antibodies specific to a region near to Fn's C terminus (and thus away from the cell binding site). Using optical waveguide lightmode spectroscopy, we show the presence of chemically coupled antibodies to yield a considerably denser and thicker Fn layer, consistent with a more vertically aligned protein. Human umbilical vein endothelial cells spread significantly faster, and in a more spherically symmetric way, on an oriented Fn layer (i.e., in the presence of immobilized monoclonal antibodies) as compared with a control Fn layer (i.e., in the absence of bound antibodies). However, we observe human umbilical vein endothelial cell spreading on the oriented Fn layer to be similar to that on a Fn layer in the absence of a carboxymethyl dextran layer, suggesting that although orienting Fn is a promising strategy, coupling strategies using linkers other than dextran may be needed. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005

This publication has 52 references indexed in Scilit: