Abstract
Following earlier papers that established the mathematical form of the time dependence of lactate concentrations during recovery from several types of exercise, and that set up a two-compartment model predicting the same time dependences, the present work applies the model to obtain parameters of specific physiological processes. Satisfactory agreement between predictions of the model and our experiment and literature data is obtained in the cases where comparisons can be made, as in the muscular lactate time evolution measured from biopsy samples, in blood flows through the active muscle at the end of exercise or at rest and their evolution during recovery, as well as in the volume of the active muscle compartment. The model prediction that lactate efflux from the muscles to the blood can reduce to zero during recovery is verified experimentally.

This publication has 31 references indexed in Scilit: