Simultaneous Partial-Wave Expansion in the Mandelstam Variables: The GroupSU(3)

Abstract
The elastic scattering amplitude of two spinless particles of equal mass ½ was expanded elsewhere in a double series of eigenfunctions which "displayed" its dependence on all the Mandelstam variables s, t, u (s+t+u=1). The expansion was then used to investigate the crossing properties of partial-wave amplitudes. We show in this paper that these eigenfunctions are certain basis vectors of the representations (σ, σ) of a suitably defined SU(3). The unequal-mass problem is also discussed.