Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics
Top Cited Papers
Open Access
- 1 May 2000
- journal article
- research article
- Published by Oxford University Press (OUP) in Glycobiology
- Vol. 10 (5) , 477-486
- https://doi.org/10.1093/glycob/10.5.477
Abstract
Immunoglobulins (IgG) are soluble serum glycoproteins in which the oligosaccharides play significant roles in the bioactivity and pharmacokinetics. Recombinant immunoglobulins (rIgG) produced in different host cells by recombinant DNA technology are becoming major therapeutic agents to treat life threatening diseases such as cancer. Since glycosylation is cell type specific, rIgGs produced in different host cells contain different patterns of oligosaccharides which could affect the biological functions. In order to determine the extent of this variation N-linked oligosaccharide structures present in the IgGs of different animal species were characterized. IgGs of human, rhesus, dog, cow, guinea pig, sheep, goat, horse, rat, mouse, rabbit, cat, and chicken were treated with peptide-N-glycosidase-F (PNGase F) and the oligosaccharides analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for neutral and acidic oligosaccharides, in positive and negative ion modes, respectively. The data show that for neutral oligosaccharides, the proportions of terminal Gal, core Fuc and/or bisecting GlcNAc containing oligosaccharides vary from species to species; for sialylated oligosaccharides in the negative mode MALDI-TOF-MS show that human and chicken IgG contain oligosaccharides with N-acetylneuraminic acid (NANA), whereas rhesus, cow, sheep, goat, horse, and mouse IgGs contain oligosaccharides with N-glycolylneuraminic acid (NGNA). In contrast, IgGs from dog, guinea pig, rat, and rabbit contain both NANA and NGNA. Further, the PNGase F released oligosaccharides were derivatized with 9-aminopyrene 1,4,6-trisulfonic acid (APTS) and analyzed by capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The CE-LIF results indicate that the proportion of the two isomers of monogalactosylated, biantennary, complex oligosaccharides vary significantly, suggesting that the branch specificity of β1,4-galactosyltransferase might be different in different species. These results show that the glycosylation of IgGs is species-specific, and reveal the necessity for appropriate cell line selection to express rIgGs for human therapy. The results of this study are useful for people working in the transgenic area.Keywords
This publication has 37 references indexed in Scilit:
- N-Glycosylation of a mouse IgG expressed in transgenic tobacco plantsGlycobiology, 1999
- The expanding beta 4-galactosyltransferase gene family: messages from the databanksGlycobiology, 1998
- The Chicken Genome Contains Two Functional Nonallelic β1,4-Galactosyltransferase GenesPublished by Elsevier ,1997
- Analysis of Acidic Oligosaccharides and Glycopeptides by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass SpectrometryAnalytical Chemistry, 1996
- Rapid Quantitative Determination of Sialic Acids in Glycoproteins by High-Performance Liquid Chromatography with a Sensitive Fluorescence DetectionAnalytical Biochemistry, 1995
- Diversity in the sialic acidsGlycobiology, 1992
- Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharidesBiochemistry and Cell Biology, 1986
- Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgGNature, 1985
- Effector functions of a monoclonal aglycosylated mouse IgG2a: Binding and activation of complement component C1 and interaction with human monocyte Fc receptorMolecular Immunology, 1985
- GLYCOSYLATION MUTANTS OF ANIMAL CELLSAnnual Review of Genetics, 1984