A time domain binaural model based on spatial feature extraction for the head-related transfer function

Abstract
A complex-valued head-related transfer function (HRTF) can be represented as a real-valued head-related impulse response (HRIR). The interaural time and level cues of HRIRs are extracted to derive the binaural model and also to normalize each measured HRIR. Using the Karhunen–Loeve expansion, normalized HRIRs are modeled as a weighted combination of a set of basis functions in a low-dimensional subspace. The basis functions and the space samples of the weights are obtained from the measured HRIR. A simple linear interpolation algorithm is employed to obtain the modeled binaural HRIRs. The modeled HRIRs are nearly identical to the measured HRIRs from an anesthetized live cat. Typical mean-square errors and cross-correlation coefficients between the 1816 measured and modeled HRIRs are 1% and 0.99, respectively. The real-valued operations and linear interpolating in the model are very effective for speeding up the model computation in real-time implementation. This approach has made it possible to simulate real free-field signals at the two eardrums of a cat via earphones and to study the neuronal responses to such a virtual acoustic space (VAR).

This publication has 14 references indexed in Scilit: