A parallel improvement algorithm for the bipartite subgraph problem

Abstract
The authors propose the first parallel improvement algorithm using the maximum neural network model for the bipartite subgraph problem. The goal of this NP-complete problem is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. A large number of instances have been simulated to verify the proposed algorithm, with the simulation result showing that the algorithm finds a solution within 200 iteration steps and the solution quality is superior to that of the best existing algorithm. The algorithm is extended for the K-partite subgraph problem where no algorithm has been proposed

This publication has 11 references indexed in Scilit: