Abstract
A highly efficient method for the synthesis of stereochemically pure (≥99% ee and >50/1 dr) α,ω-diheterofunctional reduced polypropionates has been developed. The essential features of the method are represented by the conversion of inexpensive styrene into 2-methyl-4-phenyl-1-pentanol (1) in 50% yield over two steps from styrene via Zr-catalyzed asymmetric carboalumination (ZACA) reaction in the presence of (NMI)2ZrCl2 and Pd-catalyzed vinylation of the in situ generated isoalkylalanes in the presence of Zn(OTf)2 and a catalytic amount of Pd(DPEphos)Cl2. This ZACA−Pd-catalyzed vinylation may be repeated as needed without purification. After the final ZACA reaction, oxidation with O2 provides α-hydroxy-ω-phenyl reduced polypropionates, which can be fully or partially purified by chromatography. After acetylation, Ru-catalyzed oxidative cleavage of the Ph ring, and reduction with BH3·THF, the second chromatographic purification provides stereoisomerically pure α,ω-diheterofunctional reduced polypropionates (e.g., 9 and 11) that can be further converted to key intermediates 6 and 7 for the synthesis of ionomycin (4) and borrelidin (5), respectively, by known reactions.

This publication has 27 references indexed in Scilit: