Domains of type X collagen: alteration of cartilage matrix by fibril association and proteoglycan accumulation.
Open Access
- 1 May 1992
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 117 (3) , 687-694
- https://doi.org/10.1083/jcb.117.3.687
Abstract
During endochondral bone formation, hypertrophic cartilage is replaced by bone or by a marrow cavity. The matrix of hypertrophic cartilage contains at least one tissue-specific component, type X collagen. Structurally type X collagen contains both a collagenous domain and a COOH-terminal non-collagenous one. However, the function(s) of this molecule have remained largely speculative. To examine the behavior and functions of type X collagen within hypertrophic cartilage, we (Chen, Q., E. Gibney, J. M. Fitch, C. Linsenmayer, T. M. Schmid, and T. F. Linsenmayer. 1990. Proc. Natl. Acad. Sci. USA. 87:8046-8050) recently devised an in vitro system in which exogenous type X collagen rapidly (15 min to several hours) moves into non-hypertrophic cartilage. There the molecule becomes associated with preexisting cartilage collagen fibrils. In the present investigation, we find that the isolated collagenous domain of type X collagen is sufficient for its association with fibrils. Furthermore, when non-hypertrophic cartilage is incubated for a longer time (overnight) with "intact" type X collagen, the molecule is found both in the matrix and inside of the chondrocytes. The properties of the matrix of such type X collagen-infiltrated cartilage become altered. Such changes include: (a) antigenic masking of type X collagen by proteoglycans; (b) loss of the permissiveness for further infiltration by type X collagen; and (c) enhanced accumulation of proteoglycans. Some of these changes are dependent on the presence of the COOH-terminal non-collagenous domain of the molecule. In fact, the isolated collagenous domain of type X collagen appears to exert an opposite effect on proteoglycan accumulation, producing a net decrease in their accumulation, particularly of the light form(s) of proteoglycans. Certain of these matrix alterations are similar to ones that have been observed to occur in vivo. This suggests that within hypertrophic cartilage type X collagen has regulatory as well as structural functions, and that these functions are achieved specifically by its two different domains.Keywords
This publication has 28 references indexed in Scilit:
- The spatial organization of Descemet's membrane-associated type IV collagen in the avian cornea.The Journal of cell biology, 1990
- Immunoelectron microscopy of type X collagen: Supramolecular forms within embryonic chick cartilageDevelopmental Biology, 1990
- Hypertrophic Cartilage MatrixAnnals of the New York Academy of Sciences, 1990
- THE STRUCTURE OF AVIAN TYPE-XII COLLAGEN - ALPHA-1(XII) CHAINS CONTAIN 190-KDA NON-TRIPLE HELICAL AMINO-TERMINAL DOMAINS AND FORM HOMOTRIMERIC MOLECULES1989
- The Immunoperoxidase Localization of Type X Collagen in Chick Cartilage and LungCollagen and Related Research, 1986
- Appearance of distinct types of proteoglycan in a well-defined temporal and spatial pattern during early cartilage formation in the chick limbDevelopmental Biology, 1984
- A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization.Journal of Biological Chemistry, 1983
- Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen.The Journal of cell biology, 1982
- Regulation of protein synthesis: translational control by procollagen-derived fragments.Proceedings of the National Academy of Sciences, 1981
- The occurrence of low buoyant density proteoglycans in embryonic chick cartilageBiochemical and Biophysical Research Communications, 1978