Abstract
A new algebraic approach to quasi-cyclic codes is introduced. The key idea is to regard a quasi-cyclic code over a field as a linear code over an auxiliary ring. By the use of the Chinese remainder theorem (CRT), or of the discrete Fourier transform (DFT), that ring can be decomposed into a direct product of fields. That ring decomposition in turn yields a code construction from codes of lower lengths which turns out to be in some cases the celebrated squaring and cubing constructions and in other cases the (u+/spl upsi/|u-/spl upsi/) and Vandermonde constructions. All binary extended quadratic residue codes of length a multiple of three are shown to be attainable by the cubing construction. Quinting and septing constructions are introduced. Other results made possible by the ring decomposition are a characterization of self-dual quasi-cyclic codes, and a trace representation that generalizes that of cyclic codes.
Keywords

This publication has 21 references indexed in Scilit: